THE CALLING FREQUENCY HASSLE

Like most other problems, this one probably has a simple but not too obvious solution. The situation we are faced with at present is this: There seems to be full agreement that we should adopt the technique of using a calling frequency on each band plus a working frequency or two. The division in thinking starts right after that agreement. At present we have proposals of calling and working frequencies from the ARRL, from the Socal group, and those put forth as temporary stop-gaps by the Amateur Radio Teletype Society, me. It has been suggested that one sure way to wind up this matter is to call a point of order and bring the thing to vote. Hokay, we'll do just that. Nominations are in order for calling and working channels. Send in your selection before May lst and all nominations will be listed in the May issue of the Bulletin. The frequencies getting the most votes are it.

I have listened quite a bit on $20-40-80$, bu't have heard little activity noren of 3620. So far I have worked 22 stations on that channé so it is pretty active. There is a round-table on there every evening now, usually starting around six and ending efter nine; FSST).

More and more stations being reported coming on. The additions to last months list are: WlFGL, W4OYG, W4SHJ, W6CLW, W6EV, W6PNW, W9LCL, and WØCIH. Think I will list all of the active stations on 20-40-80 next month together with the bands thoy inhohst pl-nge innlude the hand in reoorts of stations worked and heard. And WØQUO in Toledo.

Amatcur Radio Teletype Society
1379 East 15th Slecet
Brooklyल 30. N.Y.

ERUEST HAMMER
WOHWV
17030 Y1A FLORES
SAR LOREVZO, EML.

amateur radio teletype society

Zeletype Bulletin No. 22

APRIL 1953
Ah, sweet April. Spring - warm weather - and one lousy thunderstorm after another to confound my printer. Doesn't RTTY breed anything but problems? Actually I haven't much complaint since I have been able to copy most of the eastern stations on 80 meters without too much difficulty. The puny sunspots haven't been holding up their end of the deal much lately and the band has been pretty sickly with the result that even local signals come in with an inordinate amount of fading and QRM.

Actually, the bulk of my misfortuned on receiving have been due to CW QRM when a particularly strong signal comes within the receiver pass-band and swamps it. Under this condition the poor old BFO just sits there helpless and I can't beat the FSK signal up to enough cycles to feed the converter. Any suggestions for me?

Bruce Meyer, WøHZR, has had different problems: "We've gotten a lot of copy off the air here in spite of the QRM. Selective fading seems to be the greatest bugaboo though. Its hard to believe that two signals separated by only 850 cycles c an be so different in amplitude at various times. The use of heavy limiting and d.c. restoration is only part of the answer, so the quest for signal-to-noise ratio improvement goes on here."

Cecil Bastian, $W 200 G$, and his wife Mac were up here to dinner a few days ago and their big gripe is the early-to-bed habits of most of the eastern gang. Beats me too. I have called CQ after midnight almost every night and never gotten a single call. I'm up until about 2 a.m. almost every night, where is everyone else? Cec \& Mac have a model 15 perking and have been having a picnic with it on 80.

Tom Howard, WIAFN, has been trying to get things going but has had super headaches from the local noise. I sure wish that we could get more reports on just exactly how this problem was conquored by others. I have a lot of noise myself but haven't paid too much attention to it because all of the f'ellows put in such a whopping signal that it didn't count.

Bill Auld, W2DXD, dropped a card from India (business trip) saying, "Found no RTTY here at all!" Bill stopped off for one hour at Rome, one at Beirut, five hours at Bahrein, \& three at Karachi!

The conversion of the Collins VFO as per ARTT 4007 has been the topic of quite a few comments. Apparently most all that have tried have been able to get it to work well on 40 M and higher, but they haven't been able to swing it far enough on 80. I believe that a few have been able to do the job on 80, so how about letting the rest of the gang in on what you did?

Here is the circuit and complete data on the Model CFA Frequency Shift Converter made by Technical Materials Corp. You of course won't be building this complete, but there are many interesting features in this circuit which will help you in making improvements and in building future converters. Th length of this material has pushed out most of the regular the splendid job in preparing this material for publication.

THEORY OF OPERATION:-

THE LIMITER-AMPLIFIERS:- (V1, V2, AND V 3 OR V4, V5, AND V6) SUPERIMPOSED ON FVFRY CARRIER WILL BE NOISE PEAKS THE DEGREE OF FUNCTION OF THE SIGNAL-TO-NOISE RATIO. IT IS THE PURPOSE OF THE LIMITER TO RID AN INCOMING SIGNAL OF THESE PEAKS SO THAT THE REMAINDEP σ° THE CIRCUITS WILL NOT INTERPRET THEM AS BEING MARK OR SPACE PULSES. THE LIMITER, BY THE SAMF TOKEN, REJECTS INTERFERENCE FROM NFARBY VOICE OR MUSIC-MODULATED SIGNALS.

FOR THIS REASON, THEREFORE, A TWIN SETUP IS UTILIZED WHEREBY EACH CHAN NEL FROM THE DUAL DIVERSITY RECEIVER PASSES THROUGH DISCREET DISCREFT LIMITER STAGES. THF LIMITER PROPER (V2 OR V5) MAY BE BROKFN DOWN INTO TW O TRIODE STAGES, THE FIRST BEING A CATHODE-FOLLOWER AND THE SECOND BEING CATHODE-COUPLED TO THE FIRST.
UHEN A SMALL POSITIVE SIGNAL APPEARS AT THF GRID OF THE FIRST SECTFON THIS POSITIVE VOLTAGE IS TRANSLATED THROUGH THE CATHODE CDUPLING TO THF SECOND SECTION. THE EFFFCT IS TO QUICKLY CUT-OFF THE SECOND SFCTION SO THAT ANY ADDITIONAL VOLTAGES SUCH AS NOISE PEAKS DO NOT APPEARS AT THF GRID OF THE FIRST SFCTION THE FIRST SECTION IS QUICKLY AUPEARS AT OFF AND, AGAIN, THE NOISE PEAKS ARE ELIMINATED.
THE LIMITER PROPER (V2 OR V5) IS PRFCEDED BY AN ADDITIONAL LIMITER AMPLIFIFR (V1 OR V4) WHICH OPERATES AT VERY LOW SIGNAL LEVELS. THE CIRCUIT IS SO DESIGNED THAT THE TUBE EASILY REACHES GRID CURRENT CIRCUIT IS SO DESIGNED TRAT THE TURE EASION AND PLATE CURRENT CUT-OFF ON POSITIVE AND NEGATIVE PEAKS RESPECTIVELY. THE CUHVLATIVE EFFECT OF THESE TWO STAGES (I.E.; V1 AS LONG AS AN AUDIO TONE OF BETTER THAN APPROXIMATELY 20 MILLIVOLTS IS PRESENT AT THE INPUT. THE POWER AMPLIFIER (V3) THEREFORE SES ONLY THE "PHASE" PORTION OF THE ORIGINAL NOISE.

THE POWER AMPLIFIER AMPLIFIES THE LIMITED AUDIO TONE AND FFEDS IT TO THE DISCRIMINATOR RESONANT CIRCUITS.
THE DISCRIMINATOR:- THE DISCRIMINATOR CONSISTS OF TWO RESONANT CIRCUITS, ONE RESONATED ABOVE AND THE OTHER RESONATED BELOW CENTER FREQUENCY IN SUCH A MANNER THAT MAXIMUM SHIFT AND DRIFT CONDIT IONS MAY BE MET WITHOUT EXCEEDING THE DISTANCE BETWEEN THE RESONANT PEAKS.
THE VOLTAGE ACROSS EACH CIRCUIT IS A FUNCTION OF THE TONF FREQUENCY.
THE DISCRIMINATOR RECTIFIERS:- (V6 ANDD V7) THE TONE VOLTAGE ACROSS FACH RESONANT CIRCUIT IS RECTIFIED BY THE DISCRIMINATOR RECTIFIERS AN IHEN ADD IN FREQUENCY FROM MARK TO SPACE WOULD THEN CAUSE A CHANGE IN VOLTAGE PROPORTIONAL TO THE AMOUNT OF SHIFT, IS RECT IFIED, DIVERSITY COMBINED, FILTERED, AND FED TO THE CLAMP. ItS FORM APPROACHES A SQUARE WAVE BECAUSE THE SHIFT FROM ONE FREQUENCY TO ANOTHFR IS AN ABRUPT ONE.

AS AN ADDITIONAL PRECAUTION AGAINST NOISE, A LOW PASS FILTER OR DE-EMPHASIS NETUORK IS INCLUDED IN THE FORM OF C19 AND C20.

THE CLAMP:- (V8) THE VOLTAGE PRODUCED AT THE OUTPUT OF THE DISCRIMINATOR LOAD IS SYMETRICAL TO AN AXIS WHICH MAY BE POSITIVF OR.

NEGATIVE WITH RESPECT TO GROUND. THE POTENTIAL MAGNITUDE AND POLARITY REPRESENTED BY THIS AXIS IS A FUNCTION OF THE DEGREE AND DIRECTION GF DRIFT. THE OBJECT OF THE CLAMP IS, TO TREAT THIS DRIFT-PRODUCED VOLTAGE IN SUCH A MANNER THAT THE REMAINING PULSE CIRCUITS ARE UNAWARE OF ITS PRESENCE. OTHERWISE, THE QUIESCENT OPERATING POINT OF V9 WOULD BE SHIFTED OVEF A WIDE RANGE THUS PRODUCING VARYING DEGREES OF BIAS DISTOTION.

GBSERVATION OF THE SCHENATIC DIAGRAM WILL SHOW THAT THE CLAMP IS CONNECTED SO THAT IT CONDUCTS WHENEVER A POSITIVE POTENTIAL APPEARS AT ITS PLATE. I AGINE, FOR THE MOMENT, THAT THE THRESHOLD CONTROL HAS BEEN TURNED COUNTER-CLOCKWISE TO ZERO. IT CAN THEN BE SEEN THAT DUE TO THE PRESENCE OF THE CLAITP, NO POSITIVE VOLTAGE WILL EVER APPEAR AT THE GRID OF V9. C21 AND C22 WILL PERMIT THE PASSAGE OF NO D.C. AND THE CLAMP ALLOWS THE CHARGING OF THESE CONDENSFRS IN SUCH A VANNER THAT THE WAVEFORM WHICH IS PASSFD WILL HAVE ITS UPPERMOST PFAK AT GROUND POTENTIAL• WHEN THF THRESHOLD CONTROL IS PROPERLY ADJUSTFD, AORM FROM SHF OTNC THE TLAMP SINCE THE CLAMP OUTPUT IS A FUNCTION OF SHIFT, THEN THE ANIOUNT OF WYM OUTPUT WAVEFORM WITH RESPECT TO GROUND WILL ALSO BE A FUNCTION OF SHIFT.

WHEN KEYING STOPS OR THE SIGNAL DROPS OUT THE THPESHOLD VOLTAGE SERVES TO BRING V 9 INTO A STATE OF GRID SATURATION SO THAT RANDOM NOISE OR A NEARBY AMPLITUDE-IMODULAT

THE PULSE AMPLIFIER:- V9 IS A HIGH-GAIN AMPLIFIER WHICH REACHES GRID SATURATION AND PLATE-CURRENT CUT-OFF AT VERY LOW INPUT VOLTAGES. ITS OUTPUT WILL THEN BE AN ESSENTIALLY SQUARF WAVE. THE FIRST PULSE AMPLIFIER FEEDS AN INTEGRATING NETWORK WHICH SERVES TD GIVE ITS OUTPUT* A "SAW-TOOTH" SLOPE.

THE SECOND PULSE AMPLIFIER (V10):- THIS TUBE OPERATES ESSENTIALLY LIKF THE ONE THAT PRECEDES IT. THE MARK BIAS CONTROL, BY SHIFTING THE INPU! WAVEFORM WITH RESPECT TO GROUND, DETERMINES THE LENGTH OF THE IIME AXIS BETWEEN THE POINTS WHERE THIS WAVEFORM APPROACHES GROUND POTENTIAL. THESE POINTS ARE VERY NFARLY WHERE V-10 GOES INTO GRID SATURATION AND PLATE CURRENT CUT-OFF SO THAT THE WIDTH OF THE OUTPUT WAVEFORM IS THEN A FUNCTION OF THE SETT ING OF THE MARK BIAS CONTROL.

THE OUTPUT WAVEFORM THEN PASSES THROUGH A DIFFERENTIATING NETWORK SO THAT THE FRONT AND BACK EDGES OF THIS SQUARE WAVE PRODUCE SHARP POSITIVE AND NEGATIVE VOLTAGE PIPS.

THE PULSE RESTORER IS A "ONE-SHOT" MULTIVIBRATOR WHICH, WHFN KEYED IN A GIVEN DIRECTION, WILL RENAIN IN ONE STATE UNTIL AN OPPOSITE IMPULSE SENDS IT INTO ANOTHER STATE, JHERE IT WILL AGAIN REMAIN. THE SHARP WAV EFRONT FROM THE DIFFERENTIATING NETWORK SEPVES TO KEY THIS STAGF. DUE TO THE ACTION OF THE THRESHOLD CIRCUIT, THIS STAGE WILL AUTONATICALLY RECEIVE A MAPK PULSE WHFN KEYING STOPS OR THE SIGNAL DROPS WT COIPLETELY.

THE CATHODF FOLLOWER ($1 / 2$ V13):- THE CATHOLE FOLLONER SIMPLY SEPVES AS AN ISOLATING STAGE BETWEEN THE OSCILLAT OR AND THE PULSE PFST OREP. IIS OUTPUT IS PRECISELY LIKE ITS INPUT WITH THF EXCEPTION OF A LOSS IN SIGNAL AMPLITUDE.

THF OSCILLATOR ($1 / 2$ V13):- A CONVENTIONAL HARTLEY CIRCUIT IS USED HERE, THE STAGE BEING PERMITTFD TO DSCILLATE ONLY WHEN THF CATHODE FOLLOWER DOES NOT FORCE THE OSCILLAT OR GRID INT OTTHE CUT-OFF REGION. THE REASON FOR HAVING PROVIDED THIS ADDITIIONAL STAGE IS TO ALLOU FOR THPLEIE THIS IS DONF THROUGH TRANSFORNER-COUPLING TO THE OSCILLATOR OUTPUT (T7) WHICH IS RECTIFIED BY FOUR CRYSTAL DIODES AND THEN FILTERED AND FED TO THE PULSE OUTPUT STAGE.

THE PULSE OUTPUT (V14):- THE PULSE OUTPUT STAGE OPERATES AT EITHER GRID SATURATION OR PLATE CURRENT CUT-OFF. THE TELEPRINTER CONSTITUTES THE PLATE LOAD, THE CURRENT BEING ADJUSTABLE BY USE OF THE SERIES RHEOSTAT, R77.
THE MONT OR SECTION (V11 \& V21):- A CONST ANT-AMPLITUDE VERTICAL SWEEP FOR THE MONITOR IS OBTAINED BY UTILIZING BOTH THE TONE INPUT TO V 3 AND A PART OF THE OSCILLATOR OUTPUT. EACH HORIZ ONTAL PLATE IS FED BY AN AMPLIFIER, BOTH AMPLIFIERS DERIVING POINT ON THE DISCRININAT OR OUTPUT. IT IS THE DIFFERENE VOLTAGE
BETWEEN THESE TWO AMPLIFIER OUTPUTS WHICH PRODUCES A HORIZONTAL SWEEP.

AS HAS ALREADY BEEN DISCUSSED IN THE. CLAMP SECTION, AN AVERAGE D.C. POTENTIAL APPEARS AT THE DISCRIMINATOR OUTPUT WHEN DRIFT TAKES-PLACE. SINGE ONE OF THE MONITOR AMPLIFIERS IS A D.C. AMPLIFIER, ITS OUTPUT WILL DIFFER FROM THE OTHER AMPLIFIER BY AN AMOUNT PROPOATIONAL TO THI EXACTLY EQUAL TO THE OTHER) THE IT CAN BE SEEN THFREFORE THAT THE WH F THE TONE INPUT IS BEING KEYED ABOUT THE DISCRIMINATOR CENTER WHEN THE TONE INPUT IS. BEING KEYED ABOU THEEP VOLTAGE AND ONLY A VERTICAL LINE WILL APPFAR ON THE MONITOR FACE. AS DRIFT OCCURS THE UNE WILL OPEN TO THF LEFT OR RIGHT INTO A RECTANGLE OF VARYING HORIZONTAL DIMENSION, DEPENDING ON THE DIRECTION AND DEGREF OF DRIFT.

ADJUST R77 FOR 60 MILLIAMPFRES IN THF TELEPRINTER LINE. THRESHOLD CONTROL, R 32 , WHEN FULL ON IS PROPER FOR A 1 KC SHIFT; THE CONTFOL IN PROPORTION TO THE AMOUNT OF THE SHIFT DESIRED. THIS SETTING IS BY NO MEANS CRITICAL EXCEPT AT VERY LOW SHIFTS. AFTER THE THRESHOLD CONTROL HAS BEEN SET THE MARK BIAS CONTROL R45, SHOULD BE SET NEAR ITS CENTER POINT. IF THE TELEPRINTER RANGE IS SATISFACTORY NO FURTHER ADJUSTMENT IS NECESSAPY.
R59 SFT THE PULSF REST ORER BIAS SO THAT THE STAGE WILL REMAIN STABLE. IT SHOULD BE SET SO THE TELEPRINTER REMAINS IN MARK CONDITION WHEN KEYING STOPS.

RISSISTOR DESCRIPTION RESISTOR DESCRIPTION RESISTOR DESCR.

R28	$1 \mathrm{k} 1 / 2$ WATT	R29	$33 \mathrm{~K} 1 / 2 \mathrm{~W}$	R30	$83 \mathrm{~K} 1 / 2 \mathrm{~W}$
R33	2.2 MEG $1 / 2 \mathrm{~W}$	R36	470 K 1/2 w	R38	10 liFG $1 / 2 \mathrm{l}$
R40	$10 \mathrm{~K} 1 / 2 \mathrm{~W}$	R41	$10 \mathrm{MEG} 1 / 2$ WATT	R42	470 K 1/2
R43	82 K 1 WATT	R44	$470 \mathrm{~K} \mathrm{1/2} \mathrm{~W}$	R46	$10 \mathrm{~K} 1 / 2 \mathrm{w}$
R47	2.2 MEG $1 / 2 \mathrm{~W}$	F48	2.7 NEG $1 / 2 \mathrm{~W}$	R49	470 K 1/2 W
R50	82 K 1 WATT	R51	$22 \mathrm{~K} 1 / 2 \mathrm{~W}$	R52	$1 \mathrm{~K} 1 / 2 \mathrm{~W}$
R5 3	1 MEG $1 / 2 \mathrm{~W}$	R54	1 MEG $1 / 2 \mathrm{~W}$	R55	56 K 2 WATTS
R56	27 K 2 WATTS	R57	22 K 2 WATTS	R58	$1 \mathrm{HEG} 1 / 2 \mathrm{~W}$
R60	3.9 MEG $1 / 2 \mathrm{~W}$	R61	$30 \mathrm{~K} \mathrm{1/2} \mathrm{~W}$	R62	470 K 1/2 W
R63	68 K 1 WATT	R64	220 K 1/2 W	R65	220 K 1/2 W
R66	2.2 MEG $1 / 2 \mathrm{~W}$	R67	2.2 MEG $1 / 2 \mathrm{~W}$	R70	2.2 MEG 1/2 W
R71	1 MEG $1 / 2 \mathrm{~W}$	R72	1 MEG $1 / 2 \mathrm{~W}$	R73	1 MEG $1 / 2 \mathrm{~W}$
R75	$470 \mathrm{~K} \mathrm{1/2W}$	F78	220 K 1/2 W	R79	$220 \mathrm{~K} 1 / 2 \mathrm{~W}$
R80	1 K 2 WATTS	R81	3 K 10 WATTS	P. 82	3 K 10 WATTS
R83	1 MEG $1 / 2 \mathrm{~W}$	R84	2.2 MEG $1 / 2 \mathrm{~W}$	R85	$56 \mathrm{~K} 1 / 2 \mathrm{~W}$
R86	$39 \mathrm{~K} 1 / 2 \mathrm{~W}$	R87	$10 \mathrm{~K} \mathrm{1/2} \mathrm{~W}$	R88	5.1 MEG $1 / 2 \mathrm{~W}$
R89	$10 \mathrm{~K} \mathrm{1/2} \mathrm{~W}$	R.90	$47 \mathrm{~K} \mathrm{1/2} \mathrm{~W}$	R91	2200 1/2 W
R92	220 K 1/2 W	R93	220 K 1/2 W		

RESISTANCE
TAPER
RESTSTANCE

100 K	WATTS
1 MEG	WATTS
"	
"	"
"	n
"	"
500 K	"

TRANSFORMERS:-
$\begin{array}{ll}T 3 & \text { \& } 44 \\ T 5 & \text { PRIMARY BALANCED } 600 \text { OHMS, SECONDARY } 80,000 \text { OHMS }\end{array}$ $T 5$ \& T6 PRIMARY 30, OOO OHIIS, SECONDAR
T7
OSCILLATOR TRANSFORIER. 500 KC

MISCELLANEOUS:-
R77 LINE RHFOSTAT 2500 OHMS WIREWOUND 25 WATTS
CR1, CR2, CR3, \& CR4 150 VOLT CRYSTAL DIODE, GERMANIUM 40 MA MAXIMUM ANODE CURRENT
FOLTER CHOKE 15 HENRY 85 NA 270 OHMS D.C.
L2, L3, L4 \& L5 TOROID COIL .75 HENRY
LS, CHOKE FOR DISCRIMIMINATOR FILTER 300 HENRY AT NO D.C. 50 HENRY AT 3 MA D.C. GOOO OHMS D.C.

I hope you haven't missed the two articles in Swap and Shop on RTTY. Both the March and April issues had introductory articles and some cartoons by CWG that will give you a good laugh. S\&S is \$l a year; QTH: 1 Park Avenue, Natick, Mass. Nice little magazine, y'otta try it.

Say, change the number on the "Grouch" Bulletin to \#21. My mistake.

WøRSL, Bob Miedke, wants to know when the RTTY Handbook will be available. Shucks, I don't know. From where I sit it looks like I am going to have to write the whole thing and may have to draw most of the diagrams to boot. Unless someone sends in some good pictures I may have to set up a studio nd photograph equipment too. How long would it take you do all this? In addition to your regular work and hamraing of course. Looks like about August to me, but we shall see.

